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Abstract

This paper presents an approach for controlling s dynamic physical system by using

approximate reasoning. The approach has been implemented in a program named

POLE and we have successfully built a prototype hardware system to solve the cart-

pole balancing problem in real-time. This provides a complementary alternative to the

conventional analytical control methodology, and is of substantial use where a precise

mathematical model of the process being controlled is not available. Also, we furnish

a set of criteria for comparing controllers based on approximate reasoning and those
based on conventional control schemes.
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I Introduction

Human expert controllers often perform superbly well under conditions of uncertainty and

imprecision using mainly approximate reasoning. They select control action.s based on a

quick assesment of the process which they are controlling. In fact, learning to control a

physical system has been regarded as one kind of intelligence [6]. Control theorists have

successfully dealt with a large class of contro! problems by mathematically modeling the

process and solving these analytical models to generate control actions. However, the

analytical models tend to become complex, especially in large, intricate systems. The

non-linear behavior of many practical systems makes this analytical approach even more

dif[icult. In this paper, we illustrate how techniques from Approzimate Reasoning and

Knowledge-Baaed Control can be used to provide a viable alternative to the traditional

analytical control.

In particular, we explore how qualitative control parameters can be handled by a tech-

nique known as Fuzzy Control, originally proposed by Mamdani and Assilian [8], who based

their work on Zadeh's fuzzy set theory [15]. We compare fuzzy control with the state feed-

back control, a popular approach in modern digital control. Based on this comparison, we

propose a set of criteria which can be used for evaluating and selecting a suitable technique

for controlling non-llnear and complex dynamic systems. This comparative study is made

using computer simulations of a cart-pole balancing problem which represents a typical

non-linear system. This interesting proble m has served as a basis for study by many con-

nectionists and control theorists (e.g., Shaefer and Cannon [13]) and can be considered

as the bloc_world of control theory. Learning of the control process for this problem has

been studied by Michie and Chambers [9], and by Selfridge, Sutton, and Barto [12]. In

this learning research, the objective has been to write a program which can learn to keep

the pole balanced.

The organization of this paper is as follows. With a brief overview of fuzzy control the-

ory and rule-based control, we contrast rule-based controllers with the controllers based

on conventional control theory, specifying their advantages and disadvantages. The devel-

opment of the cart-pole balancing program (POLE) and its associated prototype hardware

system is described next. Finally, we develop a set of criteria for comparing the perfor-

mance of rule-based controllers and state-feedback controllers.

2 Fuzzy Sets and Rule-based Controllers

A difficulty facing many applications of AI in control is how to handle imprecision in

the knowledge expressed by expert controllers. Fuzzy set theory - suggested by Zadeh -

provides the facility to express the imprecise knowledge by using linguistic variables [14].

We have argued elsewhere about the importance of handling different types of uncertainty

in AI systems (e.g., [3],[4 D.
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The basic idea in fuzzy control centers around the labeling process, in which the reading

of a sensor is translated into a label as done by human expert controllers. For example, in

the context of controlling s nuclear reactor [1], an observed reactor period (i.e., the rate

of rise of the power) might be classified as too short, short, or negative. It is important

to noA_e that the transition between th e labels are cgntinuous rathe!than abrupt. This

means that a positive reactor's period of 90 seconds might be termed too short to degree

0.2, short to degree 1.0, and "negative" to degree 0.0 [1]. A similar concept is used in our

experiment: an angular position of say 5 degrees might be called Po6itive to a degree of

.8 and Zero (i.e., a label used to describe very small angles) to degree of 0.2. This idea of

partial matching plays an important role in fuzzy control and is related to the concept of

a membership function used in fuzzy set theory where the boundary of a set is not sharp

and the degree of membership specifies how strongly an element belongs to a set.

The knowledge base of a fuzzy controller consists of rules which are described using

linguistic variables. Since one or more sensor readings might trigger several control rules

at the same time, a conflict resolution strategy is needed. We could use a Maz-Min

compositional rule of inference for conflict resolution which works as follows: Assume that

we have the following two rules:

Rule i: IF X, isA, and X2 isB, THEN Y isC,

Rule 2: IF X, isA2 and X2 isB2 THEN Y isC2

Now, if we have zi and z2 as the sensor readings for fuzzy variables Xl and X2, then their

truth values are represented by A,(z,) and Bx(z_) respectively for Rule 1. Similarly for

Rule 2, we have A2(z,) and B2(z2) as the truth values of the, preconditions. Then what

we callthe strength of Rule 1 could be calculated by:

•ql -- A,(z,) A Bx(z2), (1)

where A is a conjunction operator which is most often defined to be the rain function.

Hence,

s, = ram(A1(.,),B,(*,)). (2)

Similarly for Rule 2:

S, = A2(*,) A B2(z,) = min(Af(z,),Bf(z,)). (3)

The effect of the strength of Rule 1 on its conclusion is calculated by:

C l = S, ^ C, = minCS,, C,), (4)

and for Rule 2:

c;= s,̂ c,= min(S,,C,). (5)
This means that Rule i is recommending a control action with CI as its membership

function and Rule 2 is recommending a control action with _ as its membership function.

The conflict-resolution process treats these as disjunctions, i.e.:

c = vc., (6)
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Figure 1: Conflict-resolution when two or more rules can fire

where v is most often defined to be the max function. Hence,

C = max(C_, C;). (7)

Since the result of this last operation itself is a membership function curve and a crisp

control action is needed for the output, we can calculate the centroid of the area under the

membership function. In mathematical terms this would mean:

y = f
f C(y)dy (8)

This process is illustrated graphically in Figure 1.

3 Rule-based Control vs. Analytical Control

We offer the following general remarks when contrasting rule-based and analytical control.

Section 5 provides a more detailed comparison:

Analytical controllers and rule-based controllers are similar in the sense that both

require that the control designer to have a detailed knowledge of the main parameters

of the process. They differ in how they treat these parameters: analytical controllers

need a precise mathematical model of the process, and the rule-based controllers

need control rules from the experts but no precise mathematical model. Hence, one

approach is more formal requiring deeper knowledge while the other is more heuristic
in nature.

• Rule-based controllers are more robust to the variations in the initial conditions of

the process and are more tolerant of sensor failures.

Rule-based controllers require a long and tedious calibration process for fine-tuning

the parameters of the control. In the case of fuzzy control, this usually means

adjusting the applied membership functions.

3



f_t---. Pole

J_._p_l a r Fositlon

pooltl_ •

Figure 2: A schematic of the cart-pole balancing prototype hardware system

• Analytical controllers achieve the steady state faster than the rule-based controllers

and are more sensitive to the signal noise.

We address the above points in our experiment with the cart-pole balancing problem

described in the next section.

4 The Cart-Pole balancing problem

This section presents the POLE program, whose task is to balance a pole hinged to a motor-

driven cart (see Figure 2). The cart moves on rail tracks to its right or its left depending

on the instruction generated by POLE. The pole has only one degree of freedom (rotation

about the hinge point). The primary control task of POLE is to balance the pole within

a certain small range of cart positions on the tall and to keep it vertical.

Four state variables are used to describe the system status at each stage, and one

variable represents the force applied to the cart. These are:

8 : angle of the pole with respect to the vertical line

: angular velocity of pole 8

z : horizontal position of the cart on the rail

: velocity of the cart

F : amount of force applied to the cart to move it toward the left or the right

Three labels are used toi_istically define the value of each of the state variables 8, 0, z,

and _: Positive (PO), Zero (ZE), and Negative (NE). Figure 3(a) illustrates the member-

ships of these linguistic terms.

For force F, we use seven fuzzy labels: Negative-Small (NS), Negative-Medium(NM),

Negative-Large (NL), Zero (ZE), Positive-Small (PS), Positive-Medium (PM), and Positive-

Large (PL). Figure 3(b) illustrates the membership functions associated with these labels.

POLE is a rule-based program consisting of only 13 rules, nine of which are used to

control the angular position and the others to control the position of the cart. The format

4



Negative Negative Negative Positive Posltlve Pos_ve

Negative Zero Positive large medium small Zero small medium large

4-- Negative 0 Positive _ 4- Negative 0 Positive

(a} [b)

Figure 3: (a)- Three qualitative levels for 0, 0, z, and _, (b)- Seven qualitative levels for F

of the rules is simple, having two or four preconditions and one consequent. The main

reason for the simplicity of these rules is that they are fuzzy control rules, and the terms

in the preconditions can cover a large class of sensor readings, each to a different degree.

A typical fuzzy control rule is:

IF 0 isPO and t)isZE THEN F isPS

Appendix A gives a listing of the 13 control rules used by the program.

A characteristic of the POLE program,_s well as some other systems based on fuzzy

control, is that at any instant of time, more than one fuzzy rule might be ready to fire. Then

POLE has to perform conflict-resolution using the heuristic Maz-Min rule of ¢ornposition

explained in section 2.

5 Experiments

A set of 7 poles of different lengths and weights were used in our experiments. The length

of these poles varied between 0.5 and 2 meters and their weights varied between 0.05 and

2.0 Kilograms:

Pole Length (m) Weight (Kg) Pole Length (m) Weight (Kg)

1 1.0 0.100 5 1.0 0.500

2 0.5 0.050 6 1.0 1.000

3 1.0 0.050 7 1.0 2.000

4 0.5 0.025

In each experiment, we compared the performance of the fuzzy controller with the

performance of the state feedback controller. In each case, the fuzzy controller performed

better with less under- and over-shoot. However, it took a longer period for the fuzzy

controller to reach stability, especiaUy for controlling the position of the cart. Table 1
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Pole-1

Max. 8 overshoot

Max. 0 undershoot (degrees)

0 settling time (seconds

Max. z overshoot (cm)

Max. z undershoot (cm

z settling time (seconds

FC

degrees) .33

_.87
3.5

14.7
_8
38.2

SFC

1.00

2.29

4.2

17.1

1.7

4.6

Pole-2

FC SFC

.34 1.11

.73 2.41

3.00 4.8

8.8 16.2

.5 2.9

41:0 6.5

Pole-6

FC SFC

.25 .63

.38 2.52

5.3 3.00

19.5 21.6

1.6 0.0

45.9 2.8

Table 1: Comparison of the fuzzy controller (FC) and the State Feedback Controller (SFC)

i .\ t0 ° '

.01 .! I 10 100 B 1 2 $ 4 Ill @

Tim,. Ikaamm TIm_ II,mml,

Figure 4: Angular control by Fuzzy Controller and State Feedback Controller

summarizes this difference for three of these poles, over a total sampling time of 50 seconds

and a time step of 5 mUi-seconds.

Figures 4, 5, present graphical display of the performance of the fuzzy controller (FC)

and the state feedback controller (SFC) in controlling angular position (0) and cart position

(z) for Pole 1.

6 Criteria for performance comparison

The following criteria, derived from these experiments, can be used in deciding which type

of controller to use in a given application.
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for the simplicity of these rules is that they are linguistic control rules, and the terms in

the preconditions can cover a large class of sensor readings, each to a different degree.

A characteristic of the POLE program, as well as some other systems based on linguistic

control, is that at any instant of time, more than one linguistic rule might be ready to

fire. In this case, POLE performs conflict-resolution using the heuristic Maz-Min rule of

composition explained in Section 2.

5 Simulations and Experiments

In this section, the performance of POLE is compared with a State Feedback Controller

(SFC). SFC is one of the modern control techniques [Kailath 80] which uses a control

law u = -kx. u is the input variable of the physical system, which is a real number in

single-input systems; x is the state variable which is an n-element column vector; k is the

n-element row vector of feedback gains. The SFC formulation is based on the state space

representation of the controlled system. The equations governing the cart-pole system are

given in the Appendix B _.

Simulation-Based Comparison: We first tested the performance of these controllers

using computer simulation. A set of 7 poles of different lengths and weights were used. The

length of these poles varied between 0.5 and 2 meters and their weights varied between 0.05

and 2.0 Kilograms. We use the notation (Pole-#, Length(m), Weight(Kg)). The poles had

the following characteristics: (Pole-l, 1.0, .1), (Pole-2, .5, .05), (Pole-3, 1.0, .05), (Pole-4,

.5, .025), (Pole-5, 1.0, .5), (Pole-6, 1.0, 1.0), and (Pole-7, 1.0, 2.0).

In each experiment, we compared the performance of the fuzzy controller with the

performance of the state feedback controller. In each case, the fuzzy controller performed

better, with less under- and over-shoot. However, it took more time for the fuzzy controller

to reach stability, especially for controlling the position of the cart. Table 1 summarizes this

difference for three of the poles, over a total sampling time of 50 seconds and a simulation

time step of 5 mill-seconds.

Figure 2 presents a graphical display of the performance of the fuzzy controller (FC)

and the state feedback controller (SFC) in controlling the pole's angular position (0).

tDue to space limitations, we avoid describing the lengthy process of modeling and system identification

which was required to design the SFC controller



I

4

0
Q.

-2

¢P

........it
....... VV'-

.001 .01 .I 1 10

R II

4

'° 1

o'!
I °

-I0 -2 .... _ ..... "J .... "1 .... -.A ...... -10
100 .IDOl .01 .1 1 IID I00

Troll Tlal, ll¢

18

,o

o!
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Design complexity: This factor could well act as a decisive element in selecting an

approach. For processes that are ill-defined and do not have physical mathematical

models, rule-based fuzzy controllers should be considered. The eornplezity issue was

not a problem in our experiment since analytical models were readily available for

the cart-poh balancing problem. However, for a large class of non-linear control

problems, this criterion has a significant role.

Completeness: This is of concern mainly in design of rule-based controllers, but it

applies as well to analytical models. The completeness requirement is that every

possible state of the process must be accounted for by the knowledge base of the
controller. Use of continuous membership functions for the predicates of the rules

and multiple rules for each state met this criterion in our experiment.

Robustness: The controller must be robust under a wide range of process parameters.

In our experiments with poles of varying lengths and weights, the fuzzy controller

was more robust than the analytical controller. In the case of Pole 7 (the heaviest

and longest pole), the fuzzy controller balanced the pole, albeit with di_culty; the

state feedback controller, however, failed to balance the pole at all.

Performance: The relative importance of such performance parameters as steady-

state accuracy, settling time, over-shoot and under-shoot depend on the application

domain. In the experiments described in the last section, the fuzzy controller pro-
duced less under- and over-shoots than the state feedback controller. However, the

state feedback controller attained the state state faster than the fuzzy controller.

Modification of the controller: Depending on the domain, it might be desirable to

update the knowledge used in the design of the controller (e.g., new technology de-

velopment). Since rule-based fuzzy controllers need a significant calibration effort of

7



adjusting the membership functions, modifying the knowledge base of the controller

may require considerable effort.

7 Conclusions

The POLE program demonstrates an approach that uses approximate reasoning in control.

We argue that this isan important factor in applying a human expert controller'sknowl-

edge. We used POLE and itsprototype hardware development to compare the performance

of a rule-based controllerwith that of an analyticalstate feedback controller.POLE pro-

duced resultsvery closeto itscounterpart analyticalcontrollerand in some cases,POLE's

resultssurpassed them. We believe that these resultsare good indications of the versatil-

ity of our approach in general as a complement to the conventional controllers. Also, in

cases where a precisemodel of the process isnot easilyavailable,rule-based controllersare

preferred.

More work has to be done on the POLE program to allow automatic learning ofapprcoc-

imate control rules,not only by analyzing successes and failures(where the only inputs

to the learning system are the binary failure/successmodes) but also by analyzing the

process trends. The inclusionof this capability would reduce the current long process of
calibration needed to design rule-based controllers.
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Appendix A: Controller's knowledge base

Two sets of fuzzy control rules have been used for the results in this paper. The first
set contains 9 rules and is used for Angular position control. The second set contains 4
rules and is used for horizontal position control of the cart. The following notation is used
in the presentation of these rules:

O : Angular position NE : Negative

_) : Angular speed NL : Negative Large

z : Horizontal position of the cart NM : Negative Medium

: Cart velocity NS : Negative Small

PO : Positive F : Force applied to the cart

PL : Positive Large VS : Very Small

PM : Positive Medium PVS : Positive Very Small

ZE : Zero NVS : Negative Very Small

Rules used for angular position control:
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